On Nonlinear Elliptic Equations with General Growth Conditions and L Data
نویسنده
چکیده
∫ Ω a(∇u) · ∇u dx = ∫ Ω fu dx and − diva(∇u) = f in D′(Ω). Moreover, for all f ∈ L(Ω) there exists a solution of (1.4). It seems natural to define a generalized solution of the problem (1.1), (1.2) for f ∈ L(Ω) as a limit of “variational solutions” and then find some suitable equivalent representation of this limit solution to obtain a larger space for determinig its properties (regularity, uniqueness). Such method is closely related to the abstract theory developed in [3] (see also [4]). WDS'05 Proceedings of Contributed Papers, Part I, 95–101, 2005. ISBN 80-86732-59-2 © MATFYZPRESS
منابع مشابه
New Method for Large Deflection Analysis of an Elliptic Plate Weakened by an Eccentric Circular Hole
The bending analysis of moderately thick elliptic plates weakened by an eccentric circular hole has been investigated in this article. The nonlinear governing equations have been presented by considering the von-Karman assumptions and the first-order shear deformation theory in cylindrical coordinates system. Semi-analytical polynomial method (SAPM) which had been presented by the author before...
متن کاملExistence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight
This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight. We apply the variational methods to prove the existence of ground state solution.
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملNonlinear Anisotropic Elliptic and Parabolic Equations in R with Advection and Lower Order Terms and Locally Integrable Data
We prove existence and regularity results for distributional solutions in RN for nonlinear elliptic and parabolic equations with general anisotropic diffusivities as well as advection and lower-order terms that satisfy appropriate growth conditions. The data are assumed to be merely locally integrable.
متن کاملExistence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملUniqueness of Entropy Solutions of Nonlinear Elliptic-Parabolic-Hyperbolic Problems in One Dimension Space
We consider a class of elliptic-parabolic-hyperbolic degenerate equations of the form b(u)t−a(u, φ(u)x)x = f with homogeneous Dirichlet conditions and initial conditions. In this paper we prove an L-contraction principle and the uniqueness of entropy solutions under rather general assumptions on the data.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005